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1. INTRODUCTION

Reverse Ho� lder inequalities play an important role in the theory of
weighted norm inequalities for classical operators and PDEs. Recall that
given a fixed cube2 Q in Rn, and 1<p<�, we say that a nonnegative
measurable function w # L p(Q) satisfies a Reverse Ho� lder inequality
(w # RHp(Q)=RHp) if there exists b # (1, �) such that for all subcubes
Q$/Q, we have

1
|Q$| |Q$

w(x) p dx�b \ 1
|Q$| |Q$

w(x) dx+
p

. (1.1)
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2 In what follows we only consider cubes with sides parallel to the coordinate axes.



Reverse Ho� lder inequalities have a crucial self improving property
discovered by Gehring (``Gehring's Lemma'' cf. [6]-Lemma 3 page 270),
namely if w # RHp then there exists ===(w)>0 such that for q # ( p, p+=)
it follows that w # Lq(Q), and moreover there exists a positive constant
c=c( p, b, n) such that

\ 1
|Q| |Q

w(x)q dx+
1�q

�c \ 1
|Q| |Q

w(x) p dx+
1�p

. (1.2)

In other words w # RHp O w # RHq , for some q(w)>p.
Gehring's celebrated result plays an important role in the theory of

quasiconformal mappings, weighted norm inequalities and its applications
to PDEs and functional analysis (cf. [2, 9, 12], and the references quoted
therein). In [17] reverse Ho� lder inequalities were studied using real inter-
polation by means of reinterpreting the Condition (1.1) in terms of Peetre's
K-functionals as follows

K(t1�p, w; L p(Q), L�(Q))
t1�p �c

K(t, w; L1(Q), L�(Q))
t

, 0<t<|Q|.

(1.3)

In [17] it was then shown that (1.3) has a self improving property that
leads to (1.2). In this manner Gehring's Lemma can be understood in the
general setting of interpolation theory as a sort of inverse reiteration
theorem. The K-functional approach is a natural extension of the classical
proof of Gehring's Lemma, based on Caldero� n�Zygmund decompositions
and the Hardy�Littlewood maximal operator. Indeed, recall that

K(t, f; L1(Q), L�(Q))
t

�� (Mf )* (t), 0<t<|Q|,

where M is the usual maximal operator of Hardy�Littlewood associated
with Q,

Mf (x)= sup
x # Q$/Q

1
|Q$| |Q$

| f ( y)| dy.

Moreover, it is of interest to note that the K-functional method can be
exploited to give new higher integrability results even when the Hardy�
Littlewood maximal operator is not well behaved (cf. [14, 16]). For example,
if the underlying measure is not doubling the corresponding K-functionals
are equivalent to rearrangements of maximal operators associated with
packings (cf. [1, 16]), which, unlike the corresponding maximal operator
of Hardy�Littlewood, are bounded on L p.
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Reverse Ho� lder inequalities have been studied in a number of different
contexts (e.g. ``parabolic type'', ``homogeneous spaces'', etc.) and in each
case the underlying geometric considerations must be adapted accordingly.
Interest in alternative formulations of RHp inequalities also comes from
recent research on vector valued weights (cf. [11, 22]).

These consideration have led us to investigate ``geometry free'' contexts
where one can define and study reverse Ho� lder inequalities which have
Gehring's self improving property. Note that (1.3) can be considered as a
somewhat complicated ``geometry free'', definition of RHp(Q). In this note
we consider simpler, ``geometry free'' formulations of reverse Ho� lder inequalities
which are associated with the theory of approximation spaces. In the classical
setting a formulation of our conditions can be given as follows,

�0 [w(x)&t] p
+ d+(x)

t p �C
�0 [w(x)&t]+ d+(x)

t
, t�t0 (1.4)

for some t0>0, where [x]+=max(x, 0), and C is a constant independent
of t. Condition (1.4) can be thus seen as a variant of the Hardy�Littlewood�
Polya order3. It is easy to prove that (1.4) has Gehring's self improving
property, in fact we show the following (cf. Section 3 for a simple direct
proof)

Lemma 1. Let (0, +) be _-finite non atomic measure space and let
w # L1(0) be a nonnegative function such that for some t0>0 (1.4) holds for
all t�t0 . Then, there exists b>0 such that

|
0

w(x) p d+(x)�b |
0

w(x) d+(x),

and moreover there exists ===(b, p), and c=c( p, q) such that for q # ( p, p+=),
w # Lq(0) and,

|
0

w(x)q d+(x)�c |
0

w(x) p d+(x).

Furthermore, if t0=(�0 w(x) p d+(x))1�p and (1.4) holds for all t�t0 , then

|
0

w(x)q d+(x)�c \|0
w(x) p d+(x)+

q�p

.
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We actually show that a proof of this result can be obtained by an
analysis of ideas in Gehring's classical paper [6]. We were led to formulate
our results comparing [6] (cf. also [13]) with the methods associated with
the theory of approximation spaces and the ``error of approximation'' func-
tional of Peetre and Sparr (cf. [3, 20]) and the K-functional approach in
[17]. In Section 4 we prove generalized forms of Lemma 1 in the context
of approximation spaces, emphasizing its connection with reiteration for-
mulae of Holmstedt�Nilsson type (cf. [19])4.

Theorem 1. Let X� =(X0 , X1) be a pair of cj -quasi-normed Abelian
groups and suppose that f satisfies a Gehring condition (i.e. f # Ga, r

5). Then
there exists :$>: such that for all q>0,

E(t, f ; X0 , E:$, q(X� ))�c~ t:$E(t, f ; t, X0 , X1).

In other words, f # Ga, r O f # Ga+=, q , q>0.

Some of our results are new even in the classical case, in particular,
although in the classical context reverse Ho� lder inequalities are usually not
considered for p<1, our formalism leads naturally to a suitable interpreta-
tion in terms of ``reverse Chebyshev inequalities'' (cf. Section 5 below.)

Gehring elements can be characterized directly in terms of indices (cf.
[16]) in particular the following abstract analogue of the A� condition
will be shown below (cf. Section 4)

Theorem 2. An element f satisfies a G:, r Gehring condition � for all
=>0 there exists #=#(=)>1 such that

E(t, #f ; X0 , X1)
E(t, f ; X0 , X1)

<
=
#: , t�t0 . (1.5)

The connection of these results with BMO will be discussed elsewhere [15].
For the benefit of the reader in Section 2 we review Gehring's approach to

Gehring's Lemma and show a number of equivalent formulations in terms of
distribution function inequalities. This analysis leads to an elementary
proof of Lemma 1 in Section 3.

In conclusion in presenting Gehring's theory in this general context we
also hope that these ideas could be useful to people working in Approximation
Theory.
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proof (cf. Theorem 4 below)

5 (cf. Definition 2 below)



2. GEHRING'S LEMMA AND DISTRIBUTION FUNCTION
INEQUALITIES

Gehring's original ideas play a fundamental role in our development.
Therefore we start by reviewing the relevant part of [6].

Let (0, +) be a _-finite non atomic measure space. The distribution
function of a measurable function f is given by

*f (t)=+[x # 0; | f (x)|>t], (t�0).

We first state a number of known elementary results which shall be used
in what follows.

Lemma 2. Let 0<q<�, t0>0, and let h be a decreasing function, then

1. If limx � � h(x)=0 and ��
t0

sq d(&h(s))<� then limx � � xqh(x)=0.

2. If ��
t0

sqh(s) ds<� then limx � � xq+1h(x)=0.

The next result is well known (cf. [23]) we include a proof for the sake
of completeness.

Lemma 3. Let (0, +) be a _-finite non atomic measure space and
w # L0(0, +) a weight (i.e. a nonnegative function) then

|
[w>t]

w(s)r d+(s)=tr*w(t)+r |
�

t
sr&1*w(s) ds, t, r>0. (2.1)

Define hw(t)=�[w>t] w(s) d+(s), and suppose that for some t0>0 we
have hw(t0)<�, then

|
[w>t]

w(s)r d+(s)=|
�

t
sr&1d(&hw(s)), t>0, r�1. (2.2)

In particular, if r�1, we have

|
[w>t]

w(s)r d+(s)=|
�

t
sr&1d(&hw(s))=|

�

t
srd(&*w(s)). (2.3)

Proof. (2.1) follows immediately from the well known

|
[w>t]

w(s)r d+(s)=|
0

w(s)r /[w>t](s)

Wr

d+(s)

=r |
�

0
sr&1+W (s) ds.
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Observe that (2.2) is obvious for r=1. Suppose that r>1, then

|
[w>t]

w(s)r d+(s)=|
0

w(s)r&1 /[w>t](s)

W r&1

w(s) ds
d+� (s)

=(r&1) |
�

0
sr&2*W (s) ds.

A simple computation shows that

*W (s)={hw(t)
hw(s)

if s<t
if s�t

,

thus

|
[w>t]

w(s)r d+(s)=(r&1) |
t

0
sr&2hw(t) ds+(r&1) |

�

t
sr&2hw(s) ds.

The result follows integrating by parts the second integral appearing on the
right hand side. It remains to prove the second inequality in (2.3) which
we obtain integrating by parts the second integral on the right hand side
of (2.1). K

The next basic elementary real variable result is due to Gehring,

Lemma 4 ([6] Lemma 1 p. 266). Suppose that p # (0, �), a # (1, �) and
let t0>0. Suppose that h: [t0 , �) � [0, �) is decreasing with limt � � h(t)
=0, and that ��

t s pd(&h(s))�at ph(t) for t # [t0 , �). Then

|
�

t0

sqd(&h(s))�
p

ap&(a&1) q
tq& p

0 |
�

t0

s pd(&h(s)),

for q # [ p, pa�(a&1)).

We now briefly review the main steps in Gehring's proof of (1.2). Suppose
that w # RHp , we want to show that there exists q>p such that w # RHq .
Gehring shows that w satisfies the following estimate (cf. [6], p. 268-(12))

|
[w>t]

w(s) p ds�ct p&1 |
[w>t]

w(s) ds, t�t0 , (2.4)

where t0=( 1
|Q| �Q w(x) p dx)1�p.
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Using Lemma 3 it follows that (2.4) is equivalent to

|
�

t
s p&1d(&hw(s))�ct p&1hw(t), t�t0 . (2.5)

Lemma 4 now implies that we can choose q>p such that

|
�

t0

sq&1d(&hw(s))�cp, q tq& p
0 |

�

0
s p&1d(&hw(s)), (2.6)

where cp, q= p&1
c( p&1)&(c&1)(q&1) . Write

|
Q

w(x)q dx=|
[w>t0]

w(s)q ds+|
[w�t0]

w(s)q ds. (2.7)

By (2.6),

|
[w>t0]

w(s)q ds=|
�

t0

sq&1d(&hw(s))

�cp, qtq& p
0 |

�

t0

s p&1d(&hw(s)) ds

=cp, qtq& p
0 |

[w>t0]
w(s) p ds,

while we obviously have

|
[w�t0]

w(s)q ds=|
[w�t0]

w(s) p w(s)q& p ds�tq& p
0 |

[w�t0]
w(s) p ds.

Inserting these estimates in (2.7) we get

|
Q

w(x)q dx�cp, q tq& p
0 |

Q
w(x) p dx.

Since t0=( 1
|Q| �Q w(x) p dx)1�p it follows that

1
|Q| |Q

w(x)q dx�cp, q \ 1
|Q| |Q

w(x) p dx+
q�p

,

as we wished to show.
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3. A GEOMETRY FREE VERSION OF GEHRING'S LEMMA

Motivated by the discussion in the previous section we introduce the
following

Definition 1. Let (0, +) be a _-finite non atomic measure space and
let w be a nonnegative measurable function. Given 1<p<� we shall say
that w # Gp if there exist c>1, t0>0, such that for all t�t0 it holds

�0 [w(x)&t] p
+ d+(x)

t p �c
�0 [w(x)&t]+ d+(x)

t
.

Remark 1. The connection with the Hardy�Littlewood�Polya order
goes somewhat deeper. As is well know the HLP theory has been extended
to measures (cf. [21] and the references therein), following the analogy
further in this direction we say that a positive measure + supported on
(0, �) satisfies a Gp condition if there exist c>1 such that for all t>0 we
have

|
0

[x&t] p
+ d+(x)

t p �c
|

0
[x&t]+ d+(x)

t
.

If we associate to a given weight w the Lebesgue-Stieltjes measure d*w

generated by its distribution function we recover Definition 1. For more
general measure spaces we should replace the test class of extremal ``angle
functions'' [x&t] p

+ by other suitable classes of convex functions. We shall
give more details on this elsewhere.

The next result establishes the equivalence between Gp and (2.4) and
several other related conditions. As we shall see below (cf. Theorem 6) the
result can be suitably reinterpreted as a reiteration theorem for Gehring
conditions!

Theorem 3. The following statements are equivalent

1. w # Gp .

2. There exists c0>1 such that for all t�t0 ,

|
�

t
s p&1*w(s) ds�c0 t p&1 |

�

t
*w(s) ds.

89REVERSE HO� LDER INEQUALITIES



3. There exists c1>1 such that for all t�t0 ,

|
[w>t]

w(s) p d+(s)�c1 t p&1 |
[w>t]

w(s) d+(s).

4. There exists c2>1 such that for all t�t0 ,

|
�

t
s p&1d(&hw(s))�c2 t p&1hw(t).

5. There exists c3>1 such that for all t�t0 ,

|
�

t
s p&1*w(s) ds�c3 t p*w(t).

Proof. 1 O 2 Recall that

|
0

[w(x)&t] p
+ d+= p |

�

t
(s&t) p&1 *w(s) ds.

If cp t=( 1
1&2&1�p&1) t�s then (s&t) p&1� 1

2 s p&1, therefore,

p |
�

cpt
s p&1*w(s) ds�2 |

0
[w(x)&t] p

+ d+(x)

�2ct p&1 |
0

[w(x)&t]+ d+(x) (since w # Gp , t�t0)

=2ct p&1 |
�

t
*w(s) ds.

Adding p �cpt
t s p&1*w(s) ds to both sides of the previous inequality we

obtain

p |
�

t
s p&1*w(s) du�2ct p&1 |

�

t
*w(s) du+ p |

cpt

t
s p&1*w(s) ds

�t p&1(2c+ pc p&1
p ) |

�

t
*w(s) ds (t�t0),

and 2 follows with c0=(2c+ pc p&1
p )�p.
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2 O 3 By Lemma 3 (2.1),

|
[w>t]

w(s) p d+(s)=t p*w(t)+ p |
�

t
s p&1*w(s) ds

�t p*w(t)+ pc0 t p&1 |
�

t
*w(s) ds (applying 2)

�pc0 t p&1 \t*w(t)+|
�

t
*w(s) ds+

=pc0 t p&1 |
[w>t]

w(s) d+(s), (by Lemma 3(2.1))

and we have obtained 3 with c1= pc0 .

3 O 4 By Lemma 3 (2.2),

|
�

t
s p&1d(&hw(s))=|

[w>t]
w(s) p d+(s)

�c1 t p&1 |
[w>t]

w(s) d+(s)=c1 t p&1hw(t).

4 O 5 Applying Lemma 3 (2.3 and 2.1) twice, we see that Condition 4
can be rewritten as

t p*w(t)+ p |
�

t
s p&1*w(s) ds�c2 t p&1 |

[w>t]
w(s) d+(s)

=c2 t p&1 \t*w(t)+|
�

t
*w(s) ds+ ,

thus

|
�

t
( ps p&1&c2 t p&1) *w(s) ds�(c2&1) t p*w(t).

If s�c1�( p&1)
2 t=Cp t, it follows that ps p&1&c2 t p&1�( p&1) s p&1, and

therefore we have

|
�

Cpt
s p&1*w(s) ds�

1
p&1 |

�

t
( ps p&1&c2 t p&1) *w(s) ds

�
c2&1
p&1

t p*w(t). (3.1)
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Now, we add �Cpt
t s p&1*w(s) ds to both sides of (3.1) and use the fact that

*w is decreasing to obtain

|
�

t
s p&1*w(s) ds�\c2&1

p&1
+

c p�( p&1)
2 &1

p + t p*w(t)=c3 t p*w(t).

5 O 1 Combine 5 with the fact that t
2*w(t)���

t�2 *w(s) ds, to get

|
�

t
s p&1*w(s) ds�2c3 t p&1 |

�

t�2
*w(s) ds.

Adding �t
t�2 s p&1*w(s) to both sides of the inequality we get

|
�

t�2
s p&1*w(s) ds�(2c3+1) t p&1 |

�

t�2
*w(s) ds (t�t0),

or equivalently,

|
�

t
s p&1*w(s) ds�(2c3+1) 2 p&1t p&1 |

�

t
*w(s) ds (t�t0),

but then

|
0

[w(x)&t] p
+ d+(x)=p |

�

t
(s&t) p&1 *w(s) ds�p |

�

t
s p&1*w(s) ds

�p(2c3+1) 2 p&1t p&1 |
�

t
*w(s) ds

=p(2c3+1) 2 p&1t p&1 |
0

[w(x)&t]+ d+(x). K

We now give the short

Proof of Lemma 1. Suppose that w satisfies (1.4) for some t0>0.
Theorem 3 and Lemma 4 show that following the steps of Gehring's
argument as outlined in the previous section we readily arrive to the
desired result.

Remark 2 (See Lemma 5 below). Note that Gehring's Lemma 1 holds
with the same proof if we modify Condition (1.4) to accommodate
constants as follows: there exist c>1, #0 , #1>0, t0>0, such that for all
t�t0 it holds

�0 [w(x)&#1 t] p
+ d+(x)

t p �c
�0 [w(x)&#0 t]+ d+(x)

t
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4. E-FUNCTIONAL APPROACH TO REVERSE HO� LDER
INEQUALITIES

In this section we develop an approximation space approach to Gehring's
Lemma, and in particular provide proofs of the results stated in the Introduction.

We shall start with a brief review of the necessary background on
approximation spaces (for more information we refer to [3, 4, 19] and the
references quoted therein).

In approximation theory it is important to consider spaces somewhat
more general than Banach spaces. We indeed consider Abelian groups X
equipped with c-quasi-norms & }&X , where c�1, this means that & }&X is a
real valued function defined on X such that (note the lack of homogeneity)

1. &x&X�0, and &x&X=0 � x=0

2. &x&X=&&x&X

3. &x+ y&X�c(&x&X+&y&X).

Obviously every Banach space is a 1-quasi-norm Abelian group. Given
a pair X� =(X0 , X1) of cj -quasi-normed Abelian groups, and an element
f # X0+X1 , we let

E(t, f ; X0 , X1)= inf
& f0&X0

�t
& f& f0&X1

, 0<t<�.

Throughout what follows E(t, f )#E(t, f ; X0 , X1).
It follows readily that E(t, f ) is a decreasing function of t and that for

0<=<1 we have (cf. [3])

E(t+g, f )�c1(E(t, =f �c0)+E(=, (1&g) t�c0)). (4.1)

It is also easy to see that if E(t, f )=0 for all t>0 then f =0, and moreover
if f # X0 with & f &X0

�t then E(s, f )=0 for all s�t.
The approximation space E:, r(X0 , X1), 0<:, r<�, consists of all

f # X0+X1 such that

& f &E:, r (X0 , X1)=\|
�

0
(s:E(s, f ))r ds

s +
1�r

<�.

Example 1 (cf. [20]). Let (0, +) be a _-finite non atomic measure
space. The (Peetre�Sparr) space L0 consists of all functions with finite
support with the 1-quasi-norm given by

& f &L0=+([ f {0]).
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It is readily seen that (cf. [3, 20])

E(t, f ; L�, L0)=*f (t), (4.2)

and

Ep, 1(L�, L0)r(L p) p.

The next reiteration formula will play a crucial role in what follows.

Theorem 4 (Holmstedt�Nilsson type formula (cf. [19])). Let X� =
(X0 , X1) be a pair of cj -quasi-normed Abelian groups then

1
cc1(2c0): \|

�

2c0 t
(s:E(s, f ))r ds

s +
1�r

�E(t, f ; X0 ; E:, r(X� ))

�c(2c2): {t:E(t, f )+\|
�

t
(s:E(s, f ))r ds

s +
1�r

= , (4.3)

where c=min(1, 2(1&r)�r).

Proof. Let g # X0 with &g&X0
�t, applying (4.1), with ==1�2, we get

\|
�

2c0t
(s:E(s, f ))r ds

s +
1�r

�cc1 \|
�

2c0 t \s:E \s&g,
f

2c0++
r ds

s +
1�r

+cc1 \|
�

2c0 t \s:E \s,
g

2c0 ++
r ds

s +
1�r

.

Note that since &g&X0
�t the second integral is 0, therefore

\|
�

2c0 t
(s:E(s, f ))r ds

s +
1�r

�cc1(2c0): \|
�

0
(u:E(u&g, f ))r ds

u +
1�r

=cc1(2c0): & f& g&E:, r(X� ) .

Taking infimum over all g # X0 with &g&X0
�t the left-most inequality

follows. The remaining inequality can be obtained as follows: for each
$>0, and u>0 pick fu # X0 with & fu&X0

�u such that & f& fu&X1
�

(1+$) E(u, f ). Then,
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& f& ft &E:, r(X0 , X1) =\|
�

0
(s:E(s&ft , f ))r ds

s +
1�r

�c _\|
2tc1

0
(s:E(s&ft , f ))r ds

s +
1�r

+\|
�

2tc1

(s:E(s&ft , f ))r ds
s +

1�r

& . (4.4)

Note that if s�2tc1 then

E(s&ft , f )�& f& ft&X1
�(1+$) E(t, f ),

while if s>2tc1 we have

& fs�2c1
& ft&X1

�c1(& fs�2c1
&X1

+& ft&X1
)�c1(s�2c1+t)�s,

consequently,

E(s&ft , f )�& f& ft&( fs�2c1
& ft)&X1

�(1+$) E( f, s�2c1).

Inserting these estimates in (4.4) we obtain

& f& ft &E:, r (X� ) �c(1+$) _\|
2tc1

0
(s:E(t, f ))r ds

s +
1�r

+\|
�

2tc1

(s:E(2, s� fc1))r ds
s +

1�r

&
�c(1+$)(2c1): _t:E(t, f )+\|

�

t
(u:E(u, f ))r du

u +
1�r

& .

Finally taking infimum over all ft # X0 with & ft &X0
�t we get

E(t, f ; X0 , E:, r(X� ))

�c(1+$)(2c1): {t:E(t, f )+\|
�

t
(u:E(u, f ))r du

u +
1�r

= .

Letting $ � 0 the desired result follows. K

Remark 3. Since (t:E( f, t))r�C �t
t�2 (s:E(s, f ))r ds

s �C ��
t�2 (s:E(s, f ))r ds

s

the upper estimate in the previous lemma can be rewritten as

E(t, f ; X0 , E:, r(X� ))�C� \|
�

t�2
(s:E(s, f ))r ds

s +
1�r

. (4.5)
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Consider the pair (L�, L1) and let f =/ (0, 1) . It is then easy to see that
although we can replace ``2t'' by ``ct'', with c>1, on the left hand side of
(4.3), the formula does not hold for ``t''.

Remark 4. Notice that (cf. [4, Proposition 3.1.16; 10])

E(t, f ; L�, L p) p=|
0

[ f (x)&t] p
+ d+(x).

Thus Condition (1.4) is equivalent to

E(t, f ; L�, L p) p�ct p&1E(t, w; L�, L1).

Moreover since Ep&1, 1(L�, L1)=(L p) p (cf. [3, Corollary 7.2.3]) and

E(t, f ; L�, (L p) p)= inf
& f0&L��t

& f& f0& p
L p=( inf

& f0&L��t
& f& f0&L p) p

=E(t, f ; L�, L p) p,

we can rewrite Condition (1.4) as

E(t, w; L�, Ep&1, 1(L�, L1))�ct p&1E(t, w; L�, L1).

The discussion in the previous remark motivates the following

Definition 2. Let X� =(X0 , X1) be a pair of cj -quasi-normed Abelian
groups, and let :, r>0. We will say that w # X0+X1 satisfies a Gehring
(:, r)-condition (briefly f # Ga, r=Ga, r(X� )) if there exists c>0, t0>0, such
that

E(t, w; X0 , E:, r(X� ))�ct:E(t, w), t�t0>0. (4.6)

The next Lemma will be useful in what follows.

Lemma 5. Let X� =(X0 , X1) be a pair of cj -quasi-normed Abelian groups,
let w # X0+X1 and let #0 , #1 , t0>0. Then,

1. w # Ga, r(X� ) � (��
t (s:E(s, w))r ds

s )1�r�cr t:E(t, w), t�t0>0.

2. E(t, #0w; X0 , E:, r(X� ))�ct:E(t, #1w), t�t0>0 O w # Ga, r(X� ).

3. (��
#0 t (s:E(s, w))r ds

s )1�r�ct:E(t, #1w), t�t0>0 O w # Ga, r(X� ).

Proof. 1. Suppose that w # Ga, r(X� ). Applying the Holmstedt�Nilsson
formula with D=c1(2c0): min(1, 2(1&r)�r) and C=(2c1): min(1, 2(1&r)�r),
we see that for t�t0 we have

|
�

2c0 t
(s:E(s, w))r ds

s
�(cDt:E(t, w))r.
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Adding to both sides �2c0t
t (s:E(s, w))r ds

s , using the fact that E(s, f ) is
decreasing and collecting terms, we get

\|
�

t
(s:E(s, w))r ds

s +
1�r

�\(cD)r+
(2c0)r&1

:r +
1�r

t:E(t, w).

Conversely, adding to both sides of the hypothesized inequality t:E(t, f )
and multiplying by C

C \t:E(t, w)+\|
�

t
(s:E(s, w))r ds

s +
1�r

+�C(c$+1) t:E(t, w),

and applying the Holmstedt�Nilsson formula we arrive to

E(t, w, X0 , E:, r(X� ))�C(c$+1) t:E(t, w).

2. By the Holmstedt�Nilsson formula we have

|
�

2c0#0 t
(s:E(s, w))r ds

s
�(cDt:E(t, #1w))r.

If 0<#0�1 we can replace 2c0#0 t by 2c0 t in the integral, similarly if #1�1
we can replace E(t, #1 w) by E(t, w). If #0>1 and 0<#1<1 then adding to
both sides �2c0#0 t

t#1
(s:E(w, s))r ds

s we have

|
�

#1 t
(s:E(s, w))r ds

s
�\cD+

(2c0#0):r&#:r
1

:r + t:E(t, #1w)r,

or equivalently

|
�

t
(s:E(s, w))r ds

s
�#&:

1 \cD+
(2c0#0)r&#r

1

:r + t:E(t, w)r.

This condition is equivalent, by Part 1, with w # Ga, r(X� ).
Finally to see 3, using the Holmstedt�Nilsson formula we get

E \t,
#0

2c0

w; X0 , E:, r(X� )+�\|
�

#0 t
(s:E(s, w))r ds

s +
1�r

�ct:E(t, #1w)

and 2 applies. K

Remark 5. The referee has kindly shown to us an example proving that
the previous result does not hold if r<0. To see this select w such that
E(t, w)=t&:(log |t| );, for t�1, :, ;>0. Then, w # G:, r for r<&1�; but
w � G:, r for r� &1�;.
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Remark 6. Since the E and K functionals can be obtained from each other
by Legendre transformations it is not difficult to see the correspondence
between K and E Gehring conditions. To fix ideas we analyze in detail the pair
(L1, L�). Suppose that f satisfies a K-Gehring condition (cf. [17]) of the
form

K(t1�p, f; L p, L�)
t1�p �c

K(t, f; L1, L�)
t

. (4.7)

Given $>0 let f =f0+ f1 , be a nearly optimal decomposition for the
E-functional, that is if we let s=E(t, f; L�, L1), we have & f0&L��t and
s�& f1&L1�(1+$) s. Then

K \ t
(1+$) s

, f; L�, L1+
�& f0&L�+

t
(1+$) s

& f1&L1�2t (4.8)

K \(1+$) s
t

, f; L1, L�+
�2s(1+$) \since K(t, f; X0 , X1)=tK \1

t
, f; X1 , X0++ , (4.9)

combining with (4.7) we get

K \\(1+$) s
t +

1�p

, f; L p, L�+
\(1+$) s

t +
1�p �c \(1+$) s

t +
&1

2s(1+$). (4.10)

Therefore we can select a decomposition such that f =g0+ g1 , and

&g0&L p+\(1+$) s
t +

1�p

&g1&L��c2s(1+$) \(1+$) s
t +

&1�p$

,

thus

&g1&L��c2s(1+$) \(1+$) s
t +

&1

=c2t,

and

E(2ct, f ; L�, L p)�&g0&Lp�c2s(1+$) \(1+$) s
t +

&1�p$

;
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moreover since s=E(t, f, L� , L1) we obtain

E(2ct, f ; L�, L p)�2c(1+$)1&1�p$ t1�p$E(t, f, L�, L1)1&1�p$,

raising to the power p and letting $ � 0 we finally get

E(2ct, f ; L�, Ep&1, 1(L�, L1) p)=E(2ct, f ; L�, L p) p

�2ct p&1E(t, f ; L�, L p), (4.11)

which by Lemma 5(2) implies that f # Gp&1, 1(L�, L1).

Following [17] the proof of Theorem 1 is based on the Holmstedt�
Nilsson formula above and the following elementary Lemma on differential
inequalities (cf. [18] for similar results.)

Lemma 6. Let h(s) be a decreasing function, :>0, and suppose that
h:(s)=s:h(s), satisfies

|
�

t
h:(s)r ds

s
�Ch:(t)r, t>t0 . (4.12)

Then there exists :$>: such that for all q>0, t>t0 ,

|
�

t
h:$(s)q ds

s
�C� h:$(t)q.

Proof. We first show that (4.12) implies the existence of c, #>0 such
that for 0<x� y�2 we have

ych:( y)�#xch:(x). (4.13)

To prove this claim note that by (4.12) there exists c # (0, 1), such that

c
t
� &

�
�t

log \|
�

t
h:(s)r ds

s +=
h:(t)r t&1

|
�

t
h:(s)r ds

s

. (4.14)

Integrating (4.14) from x to y�2 we get

c log
y

2x
�log \|

�

x
h:(s)r ds

s

|
�

y�2
h:(s)r ds

s + ,
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from where it readily follows that

\y
2+

c

|
�

y�2
h:(s)r ds

s
�xc |

�

x
h:(s)r ds

s
�Cxch:(x)r. (4.15)

On the other hand, since h is decreasing,

\y
2+

c

|
�

y�2
h:(s)r ds

s
�\y

2+
c

|
y

y�2
h:(s)r ds

s
=\y

2+
c

|
y

y�2
s:rh(s)r ds

s

�\y
2+

c

h( y)r y:r \1&(1�2):r

:r + . (4.16)

Combining (4.15) and (4.16) we finally obtain

ych:( y)r�#xch:(x)r.

Let q=r(1+=), :$=:+%, where =>&1 and % # (0, c�r), then

h:$(s)q=h(s)r(1+=) s (:+%) r(1+=)=h(s)r(1+=) s:r(1+=)s%r(1+=)

=h:(s)r(1+=) s%r(1+=)sc(1+=)s&c(1+=)=(sch:(s)r)1+= s(r%&c)(1+=);

thus

|
�

x
h:$( y)q ds

y
=|

�

x
( ych:( y)r)r+= y(r%&c)(1+=) dy

y

=|
2x

x
( ych:( y)r)1+= y(r%&c)(1+=) dy

y

+|
�

2x
( ych:( y)r)1+= y(r%&c)(1+=) dy

y

=I+II.

To estimate II we apply (4.13) to obtain

II�(#xch:(x)r)1+= |
�

2x
y(r%&c)(1+=)&1 dy.

Since r%&c<0, we get

II�(Kxch:(x)r)1+= (2x) (r%&c)(1+=)

(c&r%)(1+=)
=C$h:$(x)r(1+=).
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On the other hand,

I=|
2x

x
h(s)r(1+=) s(:+%) r(1+=) dy

y
�h(x)r(1+=) |

2x

x
s(:+%) r(1+=) dy

y

�C"h:$(x)r(1+=).

The result follows. K

We are now ready to give the

Proof of Theorem 1. Our starting point is (4.6). By Lemma 5 this is
equivalent to

|
�

t
(s:E(s, f ))r ds

s
�C(t:E(t, f ))r.

By Lemma 6, with h:(s)=s:E( f, s) we can select :$>: such that for
all q>0,

\|
�

t
(s:$E(s, f ))q ds

s +
1�q

�Ct:$E(t, f ),

which again by Lemma 5 is equivalent to

E(t, f ; X0 , E:$, q(X� ))�c~ t:$E(t, f ),

as desired.
It is readily seen that elements of an approximation space that satisfy a

Gehring condition belong, as should be expected, to a better approxima-
tion space. Indeed we have

Theorem 5. Let X� =(X0 , X1) be a pair of cj -quasi-normed Abelian
groups and let f # E:, r(X0 , X1) be such that f # Ga, r then there exists :$>:
such that for all q�r

& f &E:$, q(X0 , X1)�ct:$&:
0 & f &E:, r(X0 , X1) .

Proof. Let f # Ga, r then, by Theorem 1, there exists :$>: such that for
all t�t0

E(t, f ; X0 , E:$, r(X� ))�c~ t:$E(t, f ),

therefore by Lemma 5,

\|
�

t
(s:$E(s, f ))r ds

s +
1�r

�c$t:$E(t, f ).
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Thus, for t=t0 we have

\|
�

t0

(s:$E(s, f ))r ds
s +

1�r

�ct:$
0 E(t, f0)

=ct:$&:
0 E(t, f0) \:r |

t0

0
s:r ds

s +
1�r

�ct:$&:
0 \:r |

t0

0
(s:E(s, f ))r ds

s +
1�r

(since E decreases)

�ct:$&:
0 (:r)1�r & f &E:, r (X0 , X1) .

On the other hand,

\|
t0

0
(s:$E(s, f ))r ds

s +
1�r

=\|
t0

0
(s:$&:s:E(s, f ))r ds

s +
1�r

�t:$&:
0 \|

t0

0
(s:E(s, f ))r ds

s +
1�r

.

Combining these estimates we have

& f &E:$, r (X0 , X1)�(cr:r+1)1�r t:$&:
0 & f &E:, r (X0 , X1) .

This proves our result for q=r, if q>r the result follows from the trivial
inclusion

E:$, r(X0 , X1)/E:$, q(X0 , X1). K

We now prove Theorem 1 which provides us with an intrinsic charac-
terization of � G:, r .

Proof of Theorem 2. Suppose that f # G:, r , and let =>0. By the proof
of Theorem 1 there exists :$>: such that for t�t0 the function t:$E( f, t)
is almost decreasing. Therefore there exists C>0 such that for all !>1 we
have

(t!):$ E(t, f!)�Ct:$E(t, f )

E(t, f!)
E(t, f )

�
C
!:

1
!:$&: .
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Thus if we select !>( C
= )1�(:$&:), we have

E(t, f!)
E(t, f )

�
=
!: ,

as we wished to show.
To prove the converse let ==2&1, and select ! so that (1.5) holds. Note

that since !>1 and E-functionals are decreasing, we can iterate (1.5) and
obtain

E(t, !n f )
E(t, f )

�
2&n

!n: , n=1, ... (4.17)

Now,

|
�

t
s:r&1E(s, f )r ds= :

�

n=0
|

!n+1t

!nt
s:r&1E(s, f )r ds

� :
�

n=0

E(t, !n f )r t:r!n:r \!:r&1
:r +

� :
�

n=0

E(t, f )r 2&nr

!n:r t:r!n:r \!:r&1
:r + (by (4.17)).

Therefore,

|
�

t
s:r&1E(s, f )r ds�Ct:rE(t, f )r,

as we wished to show.
The condition in Theorem 2 does not depend on r, therefore we have

obtained the following

Corollary 1. There following are equivalent

1. f # G:, r for some r>0

2. f # G:, r for all r>0.

5. EXAMPLES AND APPLICATIONS

5.1. Reiteration of Gehring conditions. As pointed out in the previous
section, Theorem 1 applied to the pair (L�, L p), gives a new proof of
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Lemma 1. Let us apply Theorem 1 to the pair (L�, L0). Since E(t, w; L�, L0)
=*w(t) (cf. Example 1(4.2)), we have Ep, 1(L�, L0)=(L p) p. An application
of Theorem 4 gives

C |
�

c1 t
s p*w(s)

ds
s

�E(t, w; L�, (L p) p)�c |
�

c2 t
s p*w(s)

ds
s

.

It follows that w # Gp, 1(L�, L0) iff there exist C>0, t0>0 such that for all
t�t0 we have

|
�

t
s p*w(s)

ds
s

�Ct p*w(t).

The equivalence of the last condition and (1.4) was established in Theorem
3 (see in particular Condition 5). In other words, the content of Theorem 3
is that to prove Lemma 1 we can apply Theorem 1 using Gehring condi-
tions with either (L�, L0) or (L�, L1) as our ``initial pair''. The reiteration
formulae

L1=E1, 1(L�, L0), Ep, 1(L�, L0)=(L p) p=Ep&1, 1(L�, L1), (5.1)

suggests that a general principle is behind this. Indeed, combining the method
of proof of Theorem 3 with the Holmstedt�Nilsson formula we will show
a general reiteration theorem for Gehring conditions. Let us first recall the
following (known6) reiteration formulae for approximation spaces whose
proof, for the sake of completeness, we shall present below.

Lemma 7. Let X� =(X0 , X1) be a pair of cj -quasi-normed Abelian groups
then

E:&;, r(X0 , E;, r(X� ))=E:, r(X� ), r>0, :>;>0.

We can now state and prove a reiteration theorem for Gehring conditions.

Theorem 6. Let X� =(X0 , X1) a pair of cj -quasi-normed Abelian groups,
r>0, :>;>0. Then,

G:, r(X0 , X1)=G:&;, r(X0 , E;, r(X� )).

Proof. Suppose that f # G:, r(X0 , X1), then there exist c>0, t0>0 such
that

E(t, f ; X0 , E:, r(X� ))�ct:E(t, f ), t�t0 .
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By Lemma 7 we can rewrite this inequality as

E(t, f ; X0 , E:&;, r(X0 , E;, r(X� )))�ct:E(t, f ), t�t0 . (5.2)

We estimate the right hand side of (5.2) using the fact that E(t, f ) is
decreasing,

t:E(t, f )=t:&;(t;E(t, f ; X0 , X1))�ct:&; \|
t

t�2
(s;E(t, f ))r ds

s +
1�r

.

Estimating the left hand side of (5.2) from below using Holmstedt�Nilsson,
and combining with the last inequality we find

\|
�

2c0 t
(s:&;E(t, f ; X0 , E;, r(X� )))r ds

s +
1�r

�c$t:&;E \t,
f

4c0

; X0 , E;, r(X� )+ .

Therefore by Lemma 5-3 f # G:&;, r(X0 , E;, r(X� )).
Conversely, suppose that f # G:&;, r(X0 , E;, r(X� )), then for all t�t0 , we

have

E(t, f ; X0 , E:, r(X� ))�c~ t:&;E(t, f ; X0 , E;, r(X� )).

By the Holmstedt�Nilsson formula, and the fact that (a+b)r�ar+br if
0<r<1, or 21&r(a+b)r�ar+br if r�1, we arrive to

|
�

2c0 t
(s:E(s, f ))r ds

s
�b" {t:rE(t, f )r+t(:&;) r |

�

t
(s;E(s, f ))

ds
s = .

Adding �2c0t
t (s:E( f, t))t ds

s to both sides of the inequality and collecting
terms we get

|
�

t
(s:E(s, f ))r ds

s
�dt:rE(t, f )r+b"t (:&;) r |

�

t
(s;E(s, f ))r ds

s

|
�

t
s:r \1&b"

t(:&;), r

s(:&;) r+ E(s, f )r ds
s

�dt:rE(t, f )r.

At this point note that (1&b" t (:&;) r

s (:&;) r)� 1
2 if s�(2b")1�(:&;) r t, therefore

|
�

(2b")1�(:&;) r t
s:rE(s, f )r ds

s
�2 dt:rE(t, f )r.

Therefore once again by Lemma 5(3) we see that f # G:, r(X0 , X1). K
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We now give the proof of Lemma 7.

Proof. Let f # E:&;, r(X0 , E;, r(X� )). By Theorem 4 we have

& f &r
E:&;, r (X0 , E;, r (X� )) =|

�

0
(s:&;E(t, f ; X0 , E;, r(X� )))r ds

s

�c |
�

0 \s:&; \|
�

2c0 s
(z;E(z, f ))r dz

z +
1�r

+
r ds

s

�c |
�

0 \s(:&;) r |
4c0s

2c0s
(z;E(z, f ))r dz

z +
ds
s

�c |
�

0
s(:&;) r(2c0 s);r E(c, 4f0 f )r ds

s

�c$ & f &r
E:, r (X� ) .

Conversely suppose that f # E:, r(X� ), then by Theorem 4 we find

& f &E:&;, r (X0 , E;, r (X� ))

=\|
�

0
(s:&;E(s, f ; X0 , E;, r(X� )))r ds

s +
1�r

�c \|
�

0
s(:&;) r \s;E(s, f )+\|

�

s
(z;E(z, f ))r dz

z +
1�r

+
r ds

s +
1�r

�c \\|
�

0
(s:E(s, f ))r ds

s +
1�r

+\|
�

0 \s(:&;) r |
�

s
(z;E(z, f ))r dz

z +
ds
s +

1�r

+ .

Integrating by parts the right-most integral we get

|
�

0 \s(:&;) r |
�

s
(z;E(z, f ))r ds

z +
ds
s

=|
�

0
s:rE(s, f )r ds

s
,

since the integrated term vanishes on account of the fact that f # E:, r(X� ).
Thus, we find that

& f &E:&;, r (X0 , E;, r (X� ))�c \\|
�

0
(s:E(s, f ))r ds

s +
1�r

+\|
�

0
s:rE(s, f )r ds

s +
1�r

+
�c & f &E:, r (X� ) ,

as we wished to show.
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5.2. Reverse Chebyshev inequalities. In this section we consider ``Generalized
Reverse Chebyshev Inequalities'' (cf. [5]) of the form

|
[w>t]

w(s) ds�ct% |
[w>t]

w1&% (s) ds, % # (0, 1]. (5.3)

Recall that for 0<%�1 the usual Chebyshev, and easily verified, inequalities
state

t*w(t)�t% |
[w>t]

w1&% (s) ds�|
[w>t]

w(s) ds. (5.4)

And easy application of Ho� lder's inequality shows that (5.3) is equivalent
to

|
[w>t]

w(s) ds�ct*w(t). (5.5)

To see that (5.5) has a self improving property, first note that by
Lemma 3(2.1)

t*w(t)+|
�

t
*w(s) ds=|

[w>t]
w(s) ds�ct*w(t)

|
�

t
*w(s) ds�(c&1) t*w(t),

which in terms of E-functional inequalities means that

E(t, w; L�, L1)=E(t, w; L�, E1, 1(L�, L0))�(c&1) tE(t, w; L�, L0).

It follows that w # G1, 1(L�, L0), thus by Theorem 5 there exists =>0 such
that w # G1+=, 1(L�, L0). Applying Theorem 5 we have the result of [5]: if
w # L1=E1, 1(L�, L0) then w # E1+=, 1(L�, L0)=(L1+=)1+=. We further
have

(&w&L1+=)1+=�ct=
0 & f &L1 .

Therefore if (5.5) holds for t�t0=& f &L1 , we get

&w&L1+=�c & f &L1 .

Compare with [5]. The result we presented here is stronger in as much as
it shows the improvement at the level of the E-functionals as well:

|
�

t
s=*w(s) ds�c~ t1+=*w(t).
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In view of Lemma 5 we also can also treat inequalities of the form

|
[w>t]

w(s) ds�ct% |
[w>#t]

w1&% (s) ds, 0<#<1.

Remark 7. We can also consider inequalities of the form

t% |
[w>t]

w1&% (s) ds�ct*w(t). (5.6)

By Lemma 3(2.1) and the Holmstedt�Nilsson formula (5.6) is equivalent to

E(w, t ; L�, L1&%)=E(w, t ; L�, E1&%, 1(L�, L0))�c~ t1&%E(w, t ; L�, L0).

Thus these inequalities also have the self improving property.
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